Search results for "Protein S-nitrosylation"

showing 3 items of 3 documents

There's More to the Picture Than Meets the Eye: Nitric Oxide Cross Talk with Ca2+ Signaling

2013

Abstract Calcium and nitric oxide (NO) are two important biological messengers. Increasing evidence indicates that Ca2+ and NO work together in mediating responses to pathogenic microorganisms and microbe-associated molecular patterns. Ca2+ fluxes were recognized to account for NO production, whereas evidence gathered from a number of studies highlights that NO is one of the key messengers mediating Ca2+ signaling. Here, we present a concise description of the current understanding of the molecular mechanisms underlying the cross talk between Ca2+ and NO in plant cells exposed to biotic stress. Particular attention will be given to the involvement of cyclic nucleotide-gated ion channels and…

0106 biological sciencescalmodulinCell signalingCalmodulinPhysiology[SDV.SA.AGRO]Life Sciences [q-bio]/Agricultural sciences/AgronomyNanotechnologyPlant ScienceBiology01 natural sciencesNitric oxideTranscriptome03 medical and health scienceschemistry.chemical_compound[ SDV.SA.AGRO ] Life Sciences [q-bio]/Agricultural sciences/Agronomyplant defenseGeneticsPlant defense against herbivoryIon channel030304 developmental biology0303 health sciencescell signallingBiotic stressCell biologychemistryprotein S-nitrosylationgene expressionbiology.proteinplant immunitySignal transduction010606 plant biology & botanyPlant Physiology
researchProduct

Characterization of NO-Induced Nitrosative Status in Human Placenta from Pregnant Women with Gestational Diabetes Mellitus

2017

Dysregulation of NO production is implicated in pregnancy-related diseases, including gestational diabetes mellitus (GDM). The role of NO and its placental targets in GDM pregnancies has yet to be determined. S-Nitrosylation is the NO-derived posttranslational protein modification that can modulate biological functions by forming NO-derived complexes with longer half-life, termed S-nitrosothiol (SNO). Our aim was to examine the presence of endogenous S-nitrosylated proteins in cysteine residues in relation to antioxidant defense, apoptosis, and cellular signal transduction in placental tissue from control (n=8) and GDM (n=8) pregnancies. S-Nitrosylation was measured using the biotin-switch …

0301 basic medicineAgingendocrine system diseasesPlacentaNitric Oxide Synthase Type IIExpressionApoptosisBiochemistryBody Mass Index0302 clinical medicineNitric-oxidePregnancyMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3biologyCaspase 3lcsh:CytologyNitrosylationP38General MedicineCatalaseCaspase 9TrophoblastsGestational diabetesmedicine.anatomical_structureCatalase030220 oncology & carcinogenesisFemaleResearch ArticleAdultmedicine.medical_specialtyArticle SubjectNitrosationNitric OxidePathophysiology03 medical and health sciencesErk1/2Internal medicinePlacentamedicineHumanslcsh:QH573-671Protein kinase BPregnancyFetusNitratesS-NitrosothiolsCesarean SectionCell BiologyPeroxiredoxinsmedicine.diseaseProtein s-nitrosylationDiabetes Gestational030104 developmental biologyEndocrinologyOxidative stressCase-Control Studiesbiology.proteinPeroxiredoxinProto-Oncogene Proteins c-aktOxidative Medicine and Cellular Longevity
researchProduct

Protein S-nitrosylation: specificity and identification strategies in plants

2015

SPE Pôle IPM UB; International audience; The role of nitric oxide (NO) as a major regulator of plant physiological functions has become increasingly evident. To further improve our understanding of its role, within the last few years plant biologists have begun to embrace the exciting opportunity of investigating protein S-nitrosylation, a major reversible NO-dependent post-translational modification (PTM) targeting specific Cys residues and widely studied in animals. Thanks to the development of dedicated proteomic approaches, in particular the use of the biotin switch technique (BST) combined with mass spectrometry, hundreds of plant protein candidates for S-nitrosylation have been identi…

[SDV]Life Sciences [q-bio]Regulatornitric oxide;S-nitrosylation;post-translational modification;plant;signaling;biotin switcht echniqueplantComputational biologyReview ArticleBiologyBioinformaticsNitric Oxidelcsh:Chemistrybiotin switcht echniqueProtein S-nitrosylationpost-translational modifications[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyFunctional studiesGeneral ChemistryS-NitrosylationPlantsS-nitrosylationStructure and functionChemistryBiotin switchpost-translational modificationlcsh:QD1-999Plant protein[SDE]Environmental SciencesBiotin Switch TechniqueIdentification (biology)signalingFrontiers in Chemistry
researchProduct